
Container Live Migration

Adrian Reber
Red Hat

2019

Container live migration has already been implemented by some container run-
times. This article provides details what was necessary to implement container
live migration in Podman. The article starts with details about how CRIU man-
ages to checkpoint and restore processes and containers. What changes were
necessary to CRIU and all the tools and libraries used by Podman to implement
container migration. The article continues with how container live migration can
be used in Podman and finishes with an outlook on what features could be imple-
mented next to further improve Podman’s container live migration capabilities.

I. Introduction

Container live migration in the context of
this document means the process of trans-
ferring a running container from one sys-
tem (source) to another system (destina-
tion). One possible way of container live
migration is using checkpoint and restore
to serialize the container state to transfer
it from the source system to the destination
system. This document will focus on Check-
point/Restore In Userspace (CRIU)[1] as
the technique to serialize processes. CRIU
was first discussed in 2011 on the Linux
Plumbers Conference[2] and has been in-
tegrated in multiple container runtimes to
provide the possibility to live migrate con-
tainers.

To migrate a container from one system
to another CRIU will pause all processes in
the container and write the state and all
memory pages the processes in the container
are using to its image files. In addition to
the image files it is also necessary to trans-

fer the file-system the container is using to
the destination system. Once image files
and container file-system state are available
on the destination system the container can
be restarted using CRIU. Depending on the
used container runtime CRIU will re-create
used namespaces, mount file-systems, con-
figure control groups (cgroups) and restore
network connections.

The time when CRIU first pauses all pro-
cesses in a container on the source system
until all processes are running again on the
destination system is the container down-
time. CRIU offers memory pages pre-copy
and post-copy mechanisms which can be
used to reduce the container downtime dur-
ing migration.

II. CRIU Details

The concept of checkpointing and restor-
ing a process exists already much longer
than CRIU. It has been implemented in
different operating systems and there are

1

also multiple implementations in Linux.
Other checkpoint/restore implementations
in Linux, however, have different limita-
tions. Either the other implementations re-
quire to instrument the runtime environ-
ment or they rely on out-of-tree Linux kernel
changes. Both approaches have their advan-
tages but also drawbacks (see [3] for further
discussions). One of the goals of CRIU has
always been to be as transparent as possible
so that it is easy to checkpoint and restore
any process. This also means that CRIU
does not require any specially prepared en-
vironment like pre-loading libraries or out-
of-tree kernel modules.

Instead CRIU relies on existing Linux ker-
nel interfaces to retrieve all necessary infor-
mation to checkpoint a process. Not always
did the existing interfaces provide CRIU
with the necessary information and had to
be extended. This extension of Linux kernel
interfaces, most of the time, has led to new
ways to interact with the Linux kernel not
only for CRIU, but has also been useful for
other use cases.

i. Checkpointing

CRIU makes heavy use of the information
which can be read from /proc/PID/*. This
includes information about mounts, names-
paces, opened files, used memory regions.

The basic steps CRIU does during check-
pointing is to use ptrace() to pause the
task. CRIU then collects all the informa-
tion about the process and writes it to disk.
The result of a checkpoint are different files
which include all the information required
to restore the process later. This includes,
for example, the open file descriptors as well
as the content of the process registers for
each involved process, as well as all relevant
memory pages. Once all the information is
written to disk the process can continue to
run or the process is terminated.

It is important to know that CRIU always
operates on a process tree. The user or the
container runtime tells CRIU which process
identifier (PID) should be checkpointed and
CRIU will checkpoint the given PID and all
its child processes. It is not possible (not
easily at least) to restore processes with an-
other PID. The parent-child relationship of
the restored process tree also needs to be the
same during restore as it was during check-
pointing. In the container use case with a
PID namespace this should not be any prob-
lem, but using CRIU without a PID names-
pace can lead to PID collisions. If one of the
to be restored PIDs is already in use, CRIU
will abort the restore.

One of the more complex tasks, and at the
same time more interesting tasks, is the ex-
traction of all required memory pages. One
possible way to get access to the content of a
process’s memory pages is using ptrace().
Extracting a large amount of memory pages
out of a process using ptrace() is, unfortu-
nately, slow. To be able to get the content
of the process’s memory out on disk much
faster, CRIU uses a parasite code. Once the
process is paused parts of the process is re-
placed with the parasite code and the par-
asite code starts to run in the process. The
parasite code waits for commands from the
main CRIU process and thus it is possible to
extract information about the process from
within the process’s address space. Once
CRIU has finished checkpointing the process
the parasite code is removed and the process
never knows that it was under CRIU’s con-
trol. It keeps on running just as before.

What makes the parasite code concept
even more interesting is the container use
case in a SELinux environment. When
checkpointing a container with Podman[4]
the container is labeled with something sim-
ilar to container_t. Podman and the
tools it calls out to (like CRIU) are run-

2

ning with the container_runtime_t label.
This means that CRIU will run with an-
other SELinux context than the process
into which CRIU inserted the parasite code.
When the parasite code tries to connect()
to a socket of the main CRIU process to
receive its commands, SELinux will deny
this connection as a container process la-
beled with container_t tries to connect to
something on the outside of that container:
CRIU running with container_runtime_t.

The implemented solution in CRIU (3.12)
is to use setsockcreatecon()[5] to tell
SELinux to label the parasite code socket
with the same label the process in the con-
tainer is running with. This way the para-
site code which is running as container_t,
will connect to a socket which is also labeled
with container_t.

In addition to the parasite code socket
CRIU must also correctly checkpoint the
process context of all involved processes
(and threads) as well as other sockets
opened by the process in such a way that
CRIU can set all these labels correctly on
restore.

ii. Restoring
Once a process or container has been check-
pointed all required information to restore
this process or container is in the image di-
rectory which has been written by CRIU.
The simplest form of migration is transfer-
ring this directory to the destination system
where the process can then be restored with
the help of CRIU. For container migration
additional steps are required which are dis-
cussed in the next chapter.

A high level description of how CRIU re-
stores a process is that CRIU morphs itself
into the processes to be restored. For each
process to restore CRIU does a clone()[6]
to re-create the same process tree as before
checkpointing. All file descriptors and sock-

ets will be opened and positioned just as
they were before checkpointing. Memory
pages are copied from the image directory
into the newly created processes and they
will be re-mapped to the right location just
before giving back control to the process be-
ing restored.

One of the last changes CRIU does to
the processes being restored are security re-
lated changes. During restore CRIU runs
with as many privileges as possible which
are all changed to the state they had dur-
ing checkpointing just before the restore fin-
ishes. This includes seccomp, capabilities
and AppArmor or SELinux.

Restoring a process with SELinux labels
requires to restore the process context as
well as the socket context. One of the
first unusual things when restoring SELinux
process context is that CRIU morphs itself
into the restored process. This means that
the restored process has to change its own
label during restore and changing its own
SELinux process context during runtime is
not very common for a process. In the con-
tainer runtime use case this also means that
changing the SELinux process context must
happen as late as possible, because to re-
store a process CRIU performs a lot of op-
erations which require much more privileges
than a container process should have.

Once all security related confinements
have been restored CRIU gives the control
back to the original process and all processes
continue running on the destination system
just as they were before starting the whole
migration.

III. Container Runtime
Integration

CRIU based container migration exists al-
ready for some time in different container
runtimes. The following is about the inte-

3

gration of the possibility to migrate a con-
tainer with Podman.

The first Podman changes towards con-
tainer migration were integrated into Pod-
man in October 2018[7][8]. This initial sup-
port was, however, only to checkpoint and
restore containers on the same host. No mi-
gration yet.

To support checkpointing and restoring
containers with Podman required a few
changes to runc[9] and CRIU. Other con-
tainer runtimes supporting container migra-
tion with the help of CRIU delegated the
task to re-create all necessary namespaces
to CRIU. For the network namespace Pod-
man, however, uses Container Network In-
terface (CNI)[10]. So the first step was to
teach CRIU and runc[11] to restore a con-
tainer into an existing network namespace.
For the initial start of a container as well
as for container restore, Podman lets CNI
create a new and completely configured net-
work namespace and in the case of a restore
CRIU restores the container into that net-
work namespace.

Once CRIU, conmon[12] and runc were
able to handle checkpoint/restore includ-
ing external network namespaces, the ac-
tual Podman changes for checkpoint/restore
were merged.

At this point, however, it was still not
possible to migrate a Podman container.
The initial idea was that once CRIU has
written the checkpoint to the image direc-
tory it should be easy to implement migra-
tion. Take the image directory, copy it from
the source to the destination system and re-
store the container. Unfortunately that did
not work. Using Podman’s initial check-
point/restore implementation, Podman still
had metadata of the checkpointed container.
This metadata easily survived a reboot of
the system, but not migration. So before
telling CRIU to restore the container Pod-

man needs to re-create the missing container
metadata to be able to restore it.

To provide an easy user interface the ac-
tual checkpoint data as well as the con-
tainer metadata is exported in one single
file, which can be easily transferred from the
source to the destination system. To check-
point and export a container in Podman fol-
lowing command is needed:
podman container checkpoint -l

-e checkpoint.tar.gz
Copying the file checkpoint.tar.gz

from the source to the destination system
it can be used by Podman to restore a con-
tainer. Thus migrating the container:
podman container restore -i

checkpoint.tar.gz
The container metadata includes the con-

tainer ID, the container name, the con-
tainer IP address and which container im-
ages needs to be downloaded from the reg-
istry, if that container is not yet available
locally. During the restore Podman uses
the metadata to re-create the container and
then CRIU can restore the processes into
this newly set up container.

Currently this is limited to containers
which do not change their file-system. Hav-
ing a read-only container file-system makes
sure that nothing can be written to the con-
tainer. If a container with a modified file-
system is restored it can either fail immedi-
ately or at some later time when the pro-
cesses in the container are trying to access
files which have the wrong content or do not
exist.

This also uncovered an interesting runc
behaviour. Even for read-only container
file-systems, runc creates missing mount-
points, which is unexpected for a read-only
container file-system. On container restore,
however, runc did not modify the file sys-
tem. This means that it was not possible to
restore a container from a freshly pulled con-

4

tainer image, even if it was exactly the same
as used during checkpointing. After some
discussion[13] a runc change was merged to
have the same behaviour during restore as
on initial container creation.

With the necessary changes merged into
runc it was possible to implement con-
tainer migration in Podman[14] as described
above. The most difficult part was to make
sure everything works correctly in combi-
nation with SELinux. Restoring a con-
tainer with CRIU and Podman required
additional changes, especially in CRIU, to
make sure the restored container has the
same SELinux properties as during check-
pointing. Once CRIU was able to handle
SELinux correctly it was also necessary to
adapt the different involved SELinux poli-
cies which required additional coordination.

In addition to the examples of how to mi-
grate a container with Podman above, it
is also possible to restore a container with
a different name. This enables restoring a
container multiple times on multiple sys-
tems, which could be useful for container
which require a long time to start.

Start the container once and wait for a
long running initialization to finish. Tell
Podman to do a checkpoint of the container
and export it. The exported checkpoint can
then be used to start the container multiple
times with different names much faster as
all complicated initializations have already
been performed and startup time is reduced
to the time CRIU needs to copy the memory
pages to the right locations.

The implemented container migration
support in Podman can now be used to ac-
tually migrate containers by copying the ex-
ported checkpoint archive to the destination
system and tell Podman to restore the con-
tainer from that checkpoint archive. It can
also be used to create multiple copies of al-
ready running containers which can be es-

pecially useful for containers which require
a long time to start up.

IV. Optimizations

The current implementation has the limi-
tation, that it cannot handle changes be-
ing done to the container’s file system. Ei-
ther the container has to have a read-only
file-system or changes have to be written to
a tmpfs as CRIU will be able to migrate
the content of all in the container mounted
tmpfs. To open up container migration also
for container file-systems which are chang-
ing during runtime, Podman needs to be
able to export all file-system related changes
which have been made to the file-system on
top of the container image which was used
to start the container.

This optimization is mainly to make it
easier for users to migrate a container.
Right now the user has to know that the
file-system cannot change or the migration
might fail. The expectation is, that this
should be easy to implement as a next step.

Other possible optimizations are to de-
crease the container downtime during mi-
gration. CRIU provides the possibility to
use pre-copy migration, post-copy migration
as well as the combination of pre-copy and
post-copy migration. These concepts have
already been discussed[3] and CRIU has all
the necessary functionality already imple-
mented.

V. Conclusion

One of the main conclusions is probably that
implementing container migration in Pod-
man took a lot of time. Getting container
migration working required changes in many
different components: CRIU, runc, conmon,
selinux-policy, container-selinux and Pod-
man. Most of the time was not spent on

5

the actual implementation but, in this case,
on coordination and waiting. Once it was
clear what had to be done it required the
actual code changes and getting these nec-
essary changes included into the correspond-
ing upstream’s, which most of the time re-
quired some discussions. Then it was nec-
essary to wait until these changes are avail-
able to the other involved projects and then
additional changes were no longer blocked.
So a lot of communicating, coordinating and
waiting was required. All involved projects
were always helpful and open to any of these
changes, but it still required time.

With the current implementation it is
possible to migrate containers which do
not change their file-system and this ini-
tial implementation of container live migra-
tion allows the possibility to add support
for containers which are changing their file-
systems. This implementation also allows to
improve container live migration with the
help of CRIU’s support for pre-copy and
post-copy process migration. This imple-
mentation also opens the possibility to im-
plement container live migration in higher
layers which are using Podman to control
containers.

References

[1] Checkpoint/Restore In Userspace
(CRIU). [Online; accessed 2019-05-
03]. url: https://criu.org/.

[2] Checkpoint/restart in the userspace.
[Online; accessed 2019-05-03]. url:
http://blog.linuxplumbersconf.
org/2011/ocw/sessions/831.

[3] Adrian Reber. “Process migration in a
parallel environment”. In: (2016). url:
http : / / dx . doi . org / 10 . 18419 /
opus-8791.

[4] Podman. [Online; accessed 2019-05-
03]. url: https://podman.io/.

[5] setsockcreatecon(3). [Online; accessed
2019-05-03]. url: http : / / man7 .
org / linux / man - pages / man3 /
setsockcreatecon.3.html.

[6] clone(2). [Online; accessed 2019-05-
03]. url: http://man7.org/linux/
man-pages/man2/clone.2.html.

[7] Add support to checkpoint/restore con-
tainers. [Online; accessed 2019-05-
03]. url: https : / / github . com /
containers/libpod/pull/469.

[8] Adding checkpoint/restore support to
Podman. [Online; accessed 2019-05-
03]. url: https : / / podman . io /
blogs / 2018 / 10 / 10 / checkpoint -
restore.html.

[9] runc. [Online; accessed 2019-05-03].
url: https : / / github . com /
opencontainers/runc.

[10] Container Network Interface -
CNI. [Online; accessed 2019-05-
03]. url: https : / / github . com /
containernetworking/cni.

[11] Add support to checkpoint and re-
store into external network names-
paces. [Online; accessed 2019-05-03].
url: https : / / github . com /
opencontainers/runc/pull/1849.

[12] conmon: add support to restore a con-
tainer. [Online; accessed 2019-05-03].
url: https://github.com/cri-o/
cri-o/pull/1427.

[13] Create bind mount mountpoints dur-
ing restore. [Online; accessed 2019-05-
03]. url: https : / / github . com /
opencontainers/runc/pull/1968.

[14] Add support to migrate containers.
[Online; accessed 2019-05-03]. url:
https://github.com/containers/
libpod/pull/2272.

6

https://criu.org/
http://blog.linuxplumbersconf.org/2011/ocw/sessions/831
http://blog.linuxplumbersconf.org/2011/ocw/sessions/831
http://dx.doi.org/10.18419/opus-8791
http://dx.doi.org/10.18419/opus-8791
https://podman.io/
http://man7.org/linux/man-pages/man3/setsockcreatecon.3.html
http://man7.org/linux/man-pages/man3/setsockcreatecon.3.html
http://man7.org/linux/man-pages/man3/setsockcreatecon.3.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
https://github.com/containers/libpod/pull/469
https://github.com/containers/libpod/pull/469
https://podman.io/blogs/2018/10/10/checkpoint-restore.html
https://podman.io/blogs/2018/10/10/checkpoint-restore.html
https://podman.io/blogs/2018/10/10/checkpoint-restore.html
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://github.com/opencontainers/runc/pull/1849
https://github.com/opencontainers/runc/pull/1849
https://github.com/cri-o/cri-o/pull/1427
https://github.com/cri-o/cri-o/pull/1427
https://github.com/opencontainers/runc/pull/1968
https://github.com/opencontainers/runc/pull/1968
https://github.com/containers/libpod/pull/2272
https://github.com/containers/libpod/pull/2272

	Introduction
	CRIU Details
	Checkpointing
	Restoring

	Container Runtime Integration
	Optimizations
	Conclusion

