
CRIU and the PID dance

Adrian Reber
Red Hat

2019

This article is the basis for the presentation ”CRIU and the PID dance” at
the Linux Plumbers Conference 2019. This article describes the current steps
to restore a process with a certain PID using CRIU, which is called the ”PID
dance”. The reasons for the PID dance are mentioned and why it would be good
to avoid it with an extension to the newly introduced system call ”clone3()”.
Reasons to relax the current requirement of CAP_SYS_ADMIN are discussed
which would enable rootless container migration as well as rootless checkpoint
and restore of MPI based applications in HPC environments.

I. Introduction

To correctly restore processes Check-
point/Restore In Userspace (CRIU)[1] has
to restore the processes with the same pro-
cess identifiers (PID). One of the main rea-
sons for the restored processes to have the
same PIDs is to ensure that the parent
child relations of the restored process tree
are the same.

To restore a process with the same PID
it had during checkpointing, CRIU does
its PID dance: open(), write(), close(),
clone() and getpid().

The PID dance is slow as it requires mul-
tiple system calls and it opens up the pos-
sibility for a race condition. Between set-
ting the desired PID via open(), write()
and close() and the actual clone() an-
other process could have been created and
CRIU’s clone() will get the wrong PID.

Therefore a new interface to create pro-

cesses with a certain PID has been intro-
duced and will be described here.

This article is the basis for the presen-
tation ”CRIU and the PID dance” at the
Linux Plumbers Conference 2019[2].

II. CRIU Details

CRIU was first discussed in 2011 at the
Linux Plumbers Conference[3] and has
since been integrated in multiple container
runtimes to support container migration.

One of the goals of CRIU is to be as
transparent as possible, which means that
CRIU does not require the processes to be
prepared or instrumentalized in any way.
The goal of being as transparent as possi-
ble also means that the processes have to
be restored with the same PID as the pro-
cesses had during checkpointing. For single
processes this is usually not important but
as CRIU always checkpoints and restores

1



complete process trees it is important that
the parent child relations of all processes is
maintained.

One of the drawbacks of restoring all
processes with the same PID as during
checkpointing is that it opens CRIU up to
PID collisions. If a process with the PID
of the to be restored process already exists,
the restore will fail and CRIU will abort.

PID namespaces are a possibility to
avoid PID collisions and especially in the
container migration use case it is unlikely
that CRIU fails due to a PID collision. It
is, however, important to remember that
PID namespaces are not required and a re-
store can always happen in the host PID
namespace.

To restore a process CRIU morphs it-
self into the to be restored process. For
a process tree this means that CRIU forks
multiple times to re-create the process tree
in the same form it had during checkpoint-
ing. Once all the necessary processes have
been created these processes are trans-
formed into the to be restored processes.
To restore the processes with the same PID
as the processes had during checkpointing
CRIU currently has to do the PID dance.

The PID dance consists of the following
steps:

• open() /proc/sys/kernel/
ns_last_pid[4]

• write() desired (PID - 1) to
ns_last_pid

• close() ns_last_pid

• clone()

• getpid() to verify if the PID of
the newly created process actually
matches the desired PID. If another
PID is returned CRIU will abort at
this point.

The PID dance for child processes hap-
pens relatively early in the restore process,
for threads it happens relatively late.

The problem with this PID dance is that
it is slow as it requires multiple system calls
and it is open to race conditions. It can al-
ways happen that between setting the de-
sired PID via ns_last_pid and the actual
clone() another process, independent of
the restore, is created, which means that
getpid() will not return the desired PID
and CRIU will abort.

Using PID namespaces the race condi-
tion becomes unlikely but it still exists.
PID namespaces do not help with the fact
that the dance requires multiple system
calls.

One important point for further discus-
sions is that currently ns_last_pid re-
quires the capability CAP_SYS_ADMIN.

III. clone3() with set_tid

With the introduction of
CLONE_PIDFD[5] the last available
flag for clone() was used and if further
flags should be passed to clone() a new
interface was necessary. Fortunately a
new interface was included in the kernel
version 5.3: clone3()[6]

In its commit message clone3() has the
following description:

”In general, clone3() is extensi-
ble and allows for the implemen-
tation of new features.”[6]

When I first heard about clone3() I im-
mediately thought about extending it to
make it possible to clone() with a cer-
tain PID. Creating new processes with a
certain PID has been something that also
other checkpoint/restore implementations

2



tried to solve before CRIU existed in 2010:
eclone()[7]

A first patch to extend clone3() was
shared between a small group of people,
but the feedback was not very positive.
Compared to the ns_last_pid approach
my first patch opened up clone3() with
set_tid for very user. No CAP_SYS_ADMIN
was required, every user was able to create
processes with specifying a desired PID in-
dependent of the PID namespace. To im-
plement clone3() with set_tid without
any restrictions was motivated by making
it easier to restore processes as non-root
for rootless containers or for checkpointing
and restoring MPI processes.

As the feedback was not very positive
and I myself was unsure how important it
actually is for CRIU to have clone3() with
set_tid I did not continue with this patch.

A few weeks later I started to discuss
clone3() with set_tid with a few of
the CRIU developers and the feedback
was that something like clone3() with
set_tid would be important for CRIU be-
cause of the currently necessary PID dance.
With the PID dance there is always the
possibility for race conditions and it is
slow.

The largest difference to my first patch
was that this time the implementation of
clone3() with set_tid required the same
capabilities as the ns_last_pid approach.
This patch solved the race condition and
reduced the number of system calls CRIU
would need to create a process with a cer-
tain PID, this patch did not change the
required capabilities.

After a few rounds of feedback the patch
was accepted by everyone involved in the
discussion and if it accepted during the
next merge window CRIU can start to re-
move the PID dance when running on the
latest version of the kernel.

By setting set_tid of struct
clone_args to the desired PID it is
now possible to create a process with
clone3() which has the PID specified in
set_tid. It has the usual restrictions that
it fails if the PID is already in use, a PID
namespace always has to have a PID 1
and it still requires CAP_SYS_ADMIN.

IV. Relax CAP_SYS_ADMIN

With the patch to add set_tid to
clone3() it is now possible to restore pro-
cesses without the described race condition
and faster as it is using less system calls.
The next step would be to discuss if the re-
quirement of CAP_SYS_ADMIN could be re-
laxed. For the ns_last_pid approach as
well as for the clone3() approach.

Reasons to use something else than
CAP_SYS_ADMIN is to make it possible to
checkpoint and restore rootless container
thus enabling rootless container migration.
Using another capability could also enable
checkpointing and restoring of MPI pro-
cesses in HPC environments without re-
quiring root.

One possible idea is to introduce the
new capability CAP_RESTORE as proposed
in the upcoming Linux Plumbers Confer-
ence 2019[8].

References

[1] Checkpoint/Restore In Userspace
(CRIU). [Online; accessed 2019-05-
03]. url: https://criu.org/.

[2] CRIU and the PID dance. [Online; ac-
cessed 2019-08-27]. url: https : / /
linuxplumbersconf.org/event/4/
contributions/472/.

3

https://criu.org/
https://linuxplumbersconf.org/event/4/contributions/472/
https://linuxplumbersconf.org/event/4/contributions/472/
https://linuxplumbersconf.org/event/4/contributions/472/


[3] Checkpoint/restart in the userspace.
[Online; accessed 2019-05-03]. url:
http://blog.linuxplumbersconf.
org/2011/ocw/sessions/831.

[4] ns_last_pid. [Online; accessed 2019-
08-23]. url: https://www.kernel.
org / doc / Documentation / sysctl /
kernel.txt.

[5] clone: add CLONE_PIDFD. [Online;
accessed 2019-08-26]. url: https://
git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/
commit/?id=b3e5838252665ee4c.

[6] fork: add clone3. [Online; accessed
2019-08-26]. url: https : / / git .
kernel . org / pub / scm / linux /
kernel/git/torvalds/linux.git/
commit/?id=7f192e3cd316ba58c.

[7] c/r: introduce checkpoint/restore
methods to struct proto_ops. [Online;
accessed 2019-08-26]. url: https :
/ / lore . kernel . org / patchwork /
patch/198220/.

[8] Update on Task Migration at
Google Using CRIU. [Online; ac-
cessed 2019-08-27]. url: https :
//linuxplumbersconf.org/event/
4/contributions/508/.

4

http://blog.linuxplumbersconf.org/2011/ocw/sessions/831
http://blog.linuxplumbersconf.org/2011/ocw/sessions/831
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b3e5838252665ee4c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b3e5838252665ee4c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b3e5838252665ee4c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b3e5838252665ee4c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7f192e3cd316ba58c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7f192e3cd316ba58c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7f192e3cd316ba58c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7f192e3cd316ba58c
https://lore.kernel.org/patchwork/patch/198220/
https://lore.kernel.org/patchwork/patch/198220/
https://lore.kernel.org/patchwork/patch/198220/
https://linuxplumbersconf.org/event/4/contributions/508/
https://linuxplumbersconf.org/event/4/contributions/508/
https://linuxplumbersconf.org/event/4/contributions/508/

	Introduction
	CRIU Details
	clone3() with set_tid
	Relax CAP_SYS_ADMIN

