
Lazy Process Migration

Adrian Reber <areber@redhat.com>
Mike Rapoport <rppt@linux.vnet.ibm.com>

Linux Plumbers Conference 2016
November 1-4, Santa Fe, New Mexico, USA

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant
agreement No 688386



Background

Implementation

Future Plans



Background Implementation Future Plans

Process Downtime During Migration

0 10 20 30 40 50

Size in GB of migrated process

0

100

200

300

400

500

600

700

800

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

SSD backed migration (IB)
RAM drive backed migration
RAM drive backed migration (IB)
SSD backed migration

Lazy Process Migration 3/16



Background Implementation Future Plans

Process Downtime During Migration

memory
process
table
entrySource

System

Destination
System

Initiate
Migration

Quiesce
Process

transfer
transfer

Finish
Migration

Resume
Process

Time

Migration Duration

Process Downtime

memory
process
table
entry

Figure: Process Migration

Lazy Process Migration 4/16



Background Implementation Future Plans

Optimizations - Pre-Copy

memory
process
table
entrySource

System

Destination
System

Initiate
Migration

Quiesce
Process

transfer

Resume
Process

Time

memory
process
table
entry

Migration Duration

Process
Downtime

Finish
Migration

Figure: Pre-Copy Migration

Lazy Process Migration 5/16



Background Implementation Future Plans

Possible Drawbacks Using Pre-Copy

Initialization Stabilization Calculation
State of application

0

10

20

30

40

50

60

M
ig

ra
ti

on
ti

m
e

in
se

co
nd

s

3s 4s 5s

22s

33s

42s

2s

3s

4s

4s 4s

33s 33s

12s

3s 3s

3s 4s 5s

23s

33s

42s

Migration time without pre-copy
Migration time after pre-copy
Pre-copy duration

Initialization Stabilization Calculation
State of application

0

5

10

15

20

T
ra

ns
fe

rr
ed

m
em

or
y

in
G

B

5.2GB

7.5GB

9.7GB

7.5GB 7.5GB

2.8GB

5.2GB

7.5GB

9.7GB

Transfer size without pre-copy
Second transfer
Transfer size pre-copy

Lazy Process Migration 6/16



Background Implementation Future Plans

Optimizations - Post-Copy

memory

memory
process
table
entrySource

System

Destination
System

Initiate
Migration

Quiesce
Process

transfer
transfers on page fault

Resume
Process

Time

process
table
entry

Migration Duration

Process
Downtime

Finish
Migration

Figure: Post-Copy Migration

Lazy Process Migration 7/16



Background Implementation Future Plans

CRIU And Userfaultfd

I Userfaultfd (UFFD) integration into CRIU
I Most pages can be handled by UFFD

Anonymous private mappings are already supported
Shared memory is planned

I Process downtime can be decreased
I To restore a 200MB process

transfer 200MB without Post-Copy
transfer 116KB with Post-Copy

Lazy Process Migration 8/16



Background Implementation Future Plans

Lazy Migration Details 1

Source (dump)

I Memory pages are marked as lazy
during dump

I lazy memory pages are not written to
disk

I Source system waits for requests to
transfer lazy memory pages via TCP

Destination (restore)

I CRIU registers memory areas with
userfaultfd and connects to the source

I The process is restored with no
memory

I Process accesses to memory generate
page faults which are handled by the
UFFD daemon

Lazy Process Migration 9/16



Background Implementation Future Plans

Lazy Migration Details 2

criu restorecriu lazy-pages
(uffd daemon)

/path/to/lazy-pages.socket

PID
UFFD

destination system

Lazy Process Migration 10/16



Background Implementation Future Plans

Lazy Migration Details 3

restore process

mark pages
as lazy

jump into restored
process

criu restore
restored
process

access memory

kernel

Lazy Process Migration 11/16



restored
process

access memory

kernel
criu lazy-pages
uffd daemon

request page
via uffd

request page
via tcp

criu page-server

transfer page
via tcp

transfer page
via uffd

resume process



Background Implementation Future Plans

Current status

I In criu-dev branch:

local lazy restore works
remote lazy restore works
combination of pre-copy and post-copy works

I Kernel patches for userfaultfd1 are under review on linux-mm2

non-cooperative mode (support for fork() and other events)
support for shared memory

1https://git.kernel.org/cgit/linux/kernel/git/andrea/aa.git/aa.git
2http://www.spinics.net/lists/linux-mm/msg115992.html

Lazy Process Migration 13/16

https://git.kernel.org/cgit/linux/kernel/git/andrea/aa.git/
http://www.spinics.net/lists/linux-mm/msg115992.html


Background Implementation Future Plans

Limitations

I A process that executes fork(), madvise(MADV DONTNEED) or mremap will fail

I Shared (tmpfs) and hugeltbfs mappings cannot be handled by userfaultfd

I Post-copy performance is far from optimal

Lazy Process Migration 14/16



Background Implementation Future Plans

Future plans

I Add post-copy support to p.haul, runc, lxc

I Non-cooperative userfaultfd (fork() and other events) in CRIU and in the kernel

I Shared memory post-copy

I Nested userfaultfd

I Optimizations

Lazy Process Migration 15/16



Background Implementation Future Plans

The end.
Thanks for listening.

Lazy Process Migration 16/16


	Background
	Implementation
	Future Plans

