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Process Downtime During Migration
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Process Downtime During Migration
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Optimizations - Pre-Copy
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Possible Drawbacks Using Pre-Copy
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Optimizations - Post-Copy
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CRIU And Userfaultfd

I Userfaultfd (UFFD) integration into CRIU
I Most pages can be handled by UFFD

Anonymous private mappings are already supported
Shared memory is planned

I Process downtime can be decreased
I To restore a 200MB process

transfer 200MB without Post-Copy
transfer 116KB with Post-Copy
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Lazy Migration Details 1

Source (dump)

I Memory pages are marked as lazy
during dump

I lazy memory pages are not written to
disk

I Source system waits for requests to
transfer lazy memory pages via TCP

Destination (restore)

I CRIU registers memory areas with
userfaultfd and connects to the source

I The process is restored with no
memory

I Process accesses to memory generate
page faults which are handled by the
UFFD daemon
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Lazy Migration Details 2
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Lazy Migration Details 3
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Current status

I In criu-dev branch:

local lazy restore works
remote lazy restore works
combination of pre-copy and post-copy works

I Kernel patches for userfaultfd1 are under review on linux-mm2

non-cooperative mode (support for fork() and other events)
support for shared memory

1https://git.kernel.org/cgit/linux/kernel/git/andrea/aa.git/aa.git
2http://www.spinics.net/lists/linux-mm/msg115992.html
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Limitations

I A process that executes fork(), madvise(MADV DONTNEED) or mremap will fail

I Shared (tmpfs) and hugeltbfs mappings cannot be handled by userfaultfd

I Post-copy performance is far from optimal
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Future plans

I Add post-copy support to p.haul, runc, lxc

I Non-cooperative userfaultfd (fork() and other events) in CRIU and in the kernel

I Shared memory post-copy

I Nested userfaultfd

I Optimizations
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The end.
Thanks for listening.
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